GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes.

نویسندگان

  • Anyanee Buageaw
  • Meena Sukhwani
  • Ahmi Ben-Yehudah
  • Jens Ehmcke
  • Vanesa Y Rawe
  • Chumpol Pholpramool
  • Kyle E Orwig
  • Stefan Schlatt
چکیده

Spermatogonial stem cells (SSCs) are essential for spermatogenesis, and these adult tissue stem cells balance self-renewal and differentiation to meet the biological demand of the testis. The developmental dynamics of SSCs are controlled, in part, by factors in the stem cell niche, which is located on the basement membrane of seminiferous tubules situated among Sertoli cells. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), and disruption of GDNF expression results in spermatogenic defects and infertility. The GDNF signals through a receptor complex that includes GDNF family receptor alpha1 (GFRA1), which is thought to be expressed by SSCs. However, expression of GFRA1 on SSCs has not been confirmed by in vivo functional assay, which is the only method that allows definitive identification of SSCs. Therefore, we fractionated mouse pup testis cells based on GFRA1 expression using magnetic activated cell sorting. The sorted and depleted fractions of GFRA1 were characterized for germ cell markers by immunocytochemistry and for stem cell activity by germ cell transplantation. The GFRA1-positive cell fraction coeluted with other markers of SSCs, including ITGA6 and CD9, and was significantly depleted of KIT-positive cells. The transplantation results confirmed that a subpopulation of SSCs expresses GFRA1, but also that the stem cell pool is heterogeneous with respect to the level of GFRA1 expression. Interestingly, POU5F1-positive cells were enriched nearly 15-fold in the GFRA1-selected fraction, possibly suggesting heterogeneity of developmental potential within the stem cell pool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Plla Nanofiber Scaffold on Proliferation of Frozen-Thawed Neonate Mouse Spermatogonial Stem Cells

Purpose: To investigate of the effects of a poly L-lactic acid (PLLA) nanofiber scaffold on proliferation of frozen-thawed neonate mouse spermatogonial stem cells.Materials and Methods: Spermatogonial cells were isolated from neonatal 3-6-day-old NMRI mice testes by two steps enzymatic digestion and differential plating. The isolated spermatogonial cells were divided into four culture groups: 1...

متن کامل

O-3: Identification and Characterization of Repopulating Spermatogonial Stem Cells from The Adult Human Testis

Background: This study was conducted to identify and characterize repopulating spermatogonial stem cells (SSCs) in the adult human testes. Materials and Methods: Testes biopsies from obstructive azoospermic patients and normal segments of human testicular tissue were used. Flow cytometry, real time PCR and immunohistochemical analysis were performed. Purified human spermatogonia were transplant...

متن کامل

The Effect of Laminin and Gelatin Extracellular Matrix on Short-Term Cultivation of Neonate Mouse Spermatogonial Stem Cells

Purpose: To compare the effect of laminin and gelatin on short-term culture of spermatogonial stem cells (SSCs) from neonatal mouse testes.Materials and Methods: Cell suspension containing SSCs were isolated from testes of 6 day-old mice and cultured in the presence of Glial-derived neuroterophic factor (GDNF), Epidermal Growth Factor (EGF) and Basic Fibroblastic Growth Factor (bFGF) on laminin...

متن کامل

Combination of In Vivo Cryptorchid Testis and In Vitro Co- Culture System to Obtain High Purification and Proliferation of Mouse Spermatogonial Stem Cells

Background The present study was designed to evaluate the survival and proliferation of spermatogonial stem cells from cryptorchid mouse testis in co-culture system over a 3 weeks period. MaterialsAndMethods Sertoli and spermatogonial cells were isolated from bilateral cryptorchid mouse model testes. Isolated spermatogonial cells were co-cultured with Sertoli cells in minimal essential medium (...

متن کامل

The Luteinizing Hormone-Testosterone Pathway Regulates Mouse Spermatogonial Stem Cell Self-Renewal by Suppressing WNT5A Expression in Sertoli Cells

Spermatogenesis originates from self-renewal of spermatogonial stem cells (SSCs). Previous studies have reported conflicting roles of gonadotropic pituitary hormones in SSC self-renewal. Here, we explored the role of hormonal regulation of SSCs using Fshb and Lhcgr knockout (KO) mice. Although follicle-stimulating hormone (FSH) is thought to promote self-renewal by glial cell line-derived neuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biology of reproduction

دوره 73 5  شماره 

صفحات  -

تاریخ انتشار 2005